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Abstract. Broadly, there exist two protocols for point-to-point data transfer in
the Message Passing Interface (MPI) programming model - Eager and Ren-
dezvous. State-of-the-art MPI libraries decide the switch point between these pro-
tocols based on the trade-off between memory footprint of the MPI library and
communication performance without considering the overlap potential of these
communication protocols. This results in sub-par overlap of communication and
computation at the application level. While application developers can manually
tune this threshold to achieve better overlap, it involves significant effort. Further,
the communication pattern may change based on the size of the job and the input
requiring constant re-tuning making such a solution impractical. In this paper, we
take up this challenge and propose designs for point-to-point data transfer in MPI
which accounts for overlap in addition to performance and memory footprint.
The proposed designs dynamically adapt to the communication characteristic of
each communicating pair of processes at runtime. Our proposed full in-band de-
sign is able to transition from one eager-threshold to another without impacting
the communication throughput of the application. The proposed enhancements
to limit the memory footprint by dynamically freeing unused internal communi-
cation buffer is able to significantly cut down on memory footprint of the MPI
library without affecting the communication performance.
Experimental evaluations show that the proposed dynamic and adaptive design
is able to deliver performance on-par with what exhaustive manual tuning pro-
vides while limiting the memory consumed to the absolute minimum necessary
to deliver the desired benefits. For instance, with the Amber molecular dynamics
application at 1,024 processes, the proposed design is able to perform on-par with
the best manually tuned versions while reducing the memory footprint of the MPI
library by 25%. With the 3D-Stencil benchmark at 8,192 processes, the proposed
design is able to deliver much better overlap of computation and communication
as well as improved overall time compared to the default version. To the best
of our knowledge, this is the first point-to-point communication protocol design
that is capable of dynamically adapting to the communication requirements of
end applications.

Keywords: MPI, Point-to-point communication, Overlap of Communication and
Computation

1 Introduction
Message Passing Interface (MPI) [16] is a very popular parallel programming model
for developing high-performance scientific applications. The MPI Standard [18] offers
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various point-to-point, collective, remote memory and synchronization operations. The
point-to-point operation is a fundamental building block in MPI as one can orchestrate
almost all higher level primitives that MPI provides using point-to-point operations.
Point-to-point operations can be broadly classified as blocking and non-blocking de-
pending on when the buffer that has been posted to the MPI library is available for
reuse. While the semantics of blocking primitives (eg: MPI Send, MPI Recv) is geared
towards delivering the best communication performance, non-blocking primitives (eg:
MPI Isend, MPI Irecv) have the dual objective of delivering best performance while
ensuring that applications can achieve overlap of computation and communication.

Over the last several years, point-to-point non-blocking communication has
emerged as a popular method for application scientists to hide the communication over-
head by overlapping communication and computation. While modern primitives like the
Remote Memory Access (RMA) semantics proposed by the MPI-3 standard are specifi-
cally geared towards this, many popular application kernels and applications like conju-
gate gradient solvers [15], adaptive mesh refinement [12], multi-physics [26], molecular
dynamics [7], and earthquake prediction codes [9] still take advantage of non-blocking
point-to-point communication primitives to hide the communication overhead.

Although the concept of non-blocking point-to-point primitive seems simple and
the benefits obvious, there are several caveats that need to be addressed before end
applications can reap the benefits offered by this programming interface. One needs to
carefully match the semantics expected by the programming interface to that offered by
the underlying communication protocol in order to ensure optimal performance.

1.1 Motivation
There broadly exists two protocols for point-to-point data transfer in MPI — Eager and
Rendezvous. Eager protocol sends data to the peer without waiting for an acknowledg-
ment first and is thus used to transfer data of limited size to the receiver (typically small
messages). The rendezvous protocol, on the other hand, uses control messages to ensure
that the receiver has enough memory available to accommodate the incoming message.
Thus it is typically used to transfer large messages. More details about these protocols
are available in Section 2.1.

With modern multi-/many-core architectures and high-performance interconnects,
there is always a “sweet-spot” where 1) the cost of exchanging the control information
is not large enough to have an impact on the overall time of data transfer, and 2) the
cost of memory copies to the internal buffer starts to be higher than the cost of ex-
changing control information. Most open source high-performance implementations of
the MPI standard such as OpenMPI [8], MVAPICH2 [14], and MPICH [11] switch to
the rendezvous protocol from eager protocol at this “sweet-spot” typically referred to as
the “eager-threshold”. In order to avoid the performance penalties seen with packetized
data transfers, high-performance MPI libraries typically match the size of the internal
communication buffers to be same as that of the eager-threshold. Thus, a secondary fac-
tor of consideration is the size of the internal communication buffers used to stage data
in the eager protocol. Designers need to ensure that this is not so large that the memory
footprint of the MPI library becomes too high.

As described above, while significant attention has been given to ensure that these
protocols deliver best trade-off between performance and memory footprint, not much



attention has been paid to the overlap aspect of these protocols. We employ a sim-
ple case-study with a 3D-stencil benchmark (described in Section 2.3) to clearly mo-
tivate the need to account for overlap of computation and communication. Note that
this communication pattern is representative of several large applications mentioned in
Section 1. Figure 1(a) compares the raw communication performance of the 3D-stencil
benchmark run with the default eager-threshold value of 17 KB against a version where
we manually forced the eager-threshold and the internal communication staging buffer
to be 1 MB. These numbers were taken with 8,192 processes (512 nodes) on the Stam-
pede supercomputing system at TACC [25]. As expected, a smaller eager threshold
forces use of rendezvous protocol which provides better raw communication time for
large messages. However, as seen in Figure 1(b), this does not take into account the
overlap potential of the different protocols. When there is computation that can be over-
lapped, use of the eager protocol is able to deliver better overall performance due to the
higher overlap obtained. This is basically due to the fact that, with rendezvous transfer,
the data transfer (which consumes the most time) does not start until an MPI Wait or
MPI Waitall operation is called. However by switching to the eager protocol, the small
loss of raw communication performance due to multiple memory copies are more than
compensated by overlapping the most time-consuming data transfer part with compu-
tation, thereby reducing overall execution time 1(c).

 0

 5

 10

 15

 20

 25

 30

 1  8  64  512 4K 32K 512K

C
o
m

m
u
n
ic

a
ti
o
n

 L
a
te

n
c
y
 (

m
s
)

Message Size (Bytes)

Default
Manually Tuned

(a) Raw Communication Per-
formance

 0

 20

 40

 60

 80

 100

 1  8  64  512 4K 32K 512K

O
v
e
rl
a
p
 (

%
)

Message Size (Bytes)

Default
Manually Tuned

(b) Overlap Potential

 0

 10

 20

 30

 40

 50

 1  8  64  512 4K 32K 512K

O
v
e
ra

ll 
T

im
e
 (

m
s
)

Message Size (Bytes)

Default
Manually Tuned

(c) Overall Time

Fig. 1. Performance and overlap offered by eager and rendezvous protocols for 3D-
Stencil benchmark at 8,192 processes on Stampede

While it is possible for application developers to manually tune this threshold
to achieve better overlap, it involves significant effort and complexity. Modern high-
performance MPI libraries have hundreds of tunable parameters each impacting a dif-
ferent aspect of communication. Thus, it is rather difficult for an application developer
to effectively optimize a particular application using such manual tuning. Further, the
communication pattern may change based on the size of the job and the input requiring
constant re-tuning making such a solution impractical. To make matters worse, blindly
increasing the eager-threshold can also have the negative consequence of increasing the
overall memory footprint of the MPI library leaving less memory for the application
to perform its science. Large internal communication buffers can also negatively affect
the communication performance of small message operations due to poor cache locality
on the sender and the receiver sides. Figure 2 shows the adverse effect of larger eager-
threshold (and consequently larger communication buffers) on the message throughput.
These issues lead us to the following broad challenge: Can we design an adaptive and
dynamic point-to-point communication mechanism for high-performance MPI li-
braries that can deliver the best communication performance, overlap of compu-
tation and communication, and memory footprint for all classes of applications?



1.2 Contributions
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In this paper, we take up this challenge
and explore multiple point-to-point com-
munication protocol designs to enable ef-
ficient overlap of computation and com-
munication. We highlight the merits and
deficiencies of each design and evaluate
its performance with microbenchmarks
and applications on modern HPC sys-
tems. Finally, we propose a dynamic and
adaptive design for point-to-point com-
munication that enables efficient overlap
while ensuring basic communication per-
formance and memory footprint is not
adversely impacted. Our proposed full
in-band design is able to transition from
one eager-threshold to another without
impacting the communication throughput of the application while taking care of all
possible corner cases. The proposed enhancements to limit the memory footprint by
dynamically freeing unused internal communication buffers is able to significantly cut
down on memory footprint of the MPI library without affecting the communication
performance. Our experimental results show that, our proposed dynamic and adaptive
approach is able to deliver performance on par with what exhaustive manual tuning
provides while cutting down on the overall memory footprint of the MPI library. For
instance, with the Amber molecular dynamics application at 1,024 processes, the pro-
posed design was able to perform on-par with the best manually tuned versions while
reducing the memory footprint of the MPI library by 25%. With the 3D-Stencil bench-
mark at 8,192 processes, the proposed design is able to deliver much better overlap
of computation and communication as well as improved overall time compared to the
default version. To the best of our knowledge, this is the first point-to-point commu-
nication protocol design that is capable of dynamically adapting to the communication
requirements of end applications. To summarize, the major contributions of this paper
are:

– Study the interplay between communication pattern of applications and point-to-
point communication protocols

– Propose, design, implement and study multiple dynamic and adaptive point-to-
point communication protocols to deliver better overlap of computation and com-
munication

– Explore alternate design approaches to overlap computation and communication
and study its benefits and deficiencies

– Propose secondary designs to tackle the additional challenge of limiting memory
footprint of the MPI library

– Demonstrate the benefits of the proposed scheme on performance with microbench-
marks and applications



Application 
Performance

Productivity

Memory 
Scalability

Overlap

Default Manual Tuning Dynamic Selection
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posed designs

Figure 3 compares the default, man-
ually tuned, and the new designs along
the metrics of performance, produc-
tivity, memory scalability, and overlap
achieved. In all axes, the higher value is
better. As we can see, the proposed dy-
namic and adaptive design performs the
best when all metrics are considered. For
instance, the proposed design is able to
deliver overlap of computation and com-
munication and overall application per-
formance comparable to the best manu-
ally tuned version while providing a high
degree of productivity similar to the de-
fault versions. It is also able to signifi-
cantly cut down on the memory requirement of the MPI library when compared to best
manually tuned version.

2 Background

In this section, necessary background information for this paper is provided.

2.1 Protocols for High-Performance Point-to-point Communication in MPI

Figures 4(a) and 4(b) depict how the eager and rendezvous protocol respectively are
typically implemented.The eager protocol consists of four steps — 1) copying the data
from application buffer to buffers internal to the MPI library, 2) initiating the data trans-
fer to the remote process, 3) detecting the reception of data in buffers internal to the
MPI library, and 4) copying the data back to the application buffer. With most high-
performance networks like InfiniBand, the network itself takes care of the actual data
transfer. Thus, initiating the data transfer at the sender and detecting the reception of
the data at the receiver are low overhead tasks. So, apart from the time to transfer data
over the network, the main costs involved in an eager transfer are the memory copies
at the sender / receiver. Note that steps #1 and #2 happen inside the send function call
itself. With a rendezvous protocol on the other hand (Figure 4(b)), MPI designers take
advantage of the RDMA feature that high-performance interconnects like InfiniBand
offers and transfers data directly from the source application buffer to the target ap-
plication buffer (with appropriate exchange of control information), thereby avoiding
the extra large memory copies from the application buffer to internal communication
buffers within the library.

2.2 Amber

Amber [7] is a molecular dynamics package including numerous programs that work in
conjunction to perform end-to-end molecular dynamics simulation (from the creation
of input files to the analysis of results).
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2.3 3D-Stencil Benchmark

The processes in the benchmark are mapped onto a 3D grid and each process talks to its
neighbors in each dimension (6 neighbors). In every step, each process posts MPI Irecv
operations for all of the messages it expects and then posts all of the MPI Isend calls. It
waits for all of the transfers to complete with one MPI Waitall call. At the end of each
iteration, the benchmark executes a call to MPI Allreduce to collect boundary informa-
tion from all processes participating in the job. To calculate the overlap of communi-
cation and computation, we first measure the time to perform all the MPI Irecvs and
MPI Isends immediately followed by a MPI Waitall. The benchmark also computes
the overall latency (the total time taken when computation is overlapped with commu-
nication), the communication and the computation time, and the overlap percentage. In
addition, we are also time the initialization overhead and the wait time.

3 Common Challenges in Designing Dynamic and Adaptive
Point-to-point Communication Protocols

Several applications tend to communicate with its peer processes using varying message
sizes. Thus, one of the first design challenge is to enable the ability to have different
eager-threshold values for different process pairs. To this end, we introduce two adap-
tive and dynamic designs — 1) partial in-band and 2) fully in-band that are capable of
updating the eager-threshold for a pair of processes. However, there are some common
design challenges that need to be addressed before such a change of eager-threshold
can occur. We enumerate these challenges and our solutions to address these challenges
in the following sub-sections.

3.1 Triggering Eager-Threshold Change

It is important for the MPI library to correctly identify when it needs to migrate to a
higher eager-threshold in order to obtain better overlap of computation and communi-
cation. We find that two conditions need to hold for such a change of eager-threshold to
have a positive impact on the performance of the end application:

1. The use of non-blocking send and/or recv operation (eg: MPI Isend, MPI Irecv) by
the application



2. The time elapsed between posting non-blocking send / recv operation and polling
for completion of the operation (through MPI Wait, MPI Waitall etc) should be a
reasonable proportion (50% or more) of the total estimated time for data transfer

If either one of these conditions does not hold, then it is unlikely that the application
will see any benefits because of the eager-threshold change. For instance, in an applica-
tion using blocking send / recv operations there is no potential for overlap. On the other
hand, if the time between posting the non-blocking operation and polling for comple-
tion is very fast (like in the case of a typical bandwidth benchmark), the potential for
overlap is significantly reduced. Further, as shown in Section 1.1, incorrectly increasing
the eager-threshold can negatively impact the performance of small messages due to the
paging behavior at the receiver process. Finally, the initiating process must also ensure
that there are enough resources available locally to allocate the resources necessary to
perform an eager-threshold switch as described in Section 3.3.

3.2 Identifying the New Eager-Threshold

As the average size of messages being sent from process A to process B need not be
the same as those being sent in the opposite direction, a “handshake” or “agreement”
protocol is required to ensure that both processes settle on the same value for eager-
threshold. This is very critical as different values for eager-threshold for a process pair
can result in undefined communication behavior (like a hung data transfer). Further, it
is possible that any one of the processes is unable to honor the eager-threshold change
request (due to lack of resources or some internal errors). In this scenario, the process
encountering the failure needs a mechanism to inform the peer process of its inability
to proceed with the eager-threshold change.

We introduce two new packet types “NEW CONN HANDSHAKE REQ” and
“NEW CONN HANDSHAKE REP” to address these issues. When a process decides
to trigger an eager-threshold change (as identified in Section 3.1), it sends out a
“NEW CONN HANDSHAKE REQ” packet to its peer and marks the virtual com-
munication channel that exists between the two processes to indicate that an eager-
threshold change is in progress. This packet contains the new value of eager-threshold
the initiating process wants the communication channel to be moved to. The new eager-
threshold is calculated using the following equation:

Thresholdnew = 2

⌈
log2

(∑
sizeof(Rndv Msg+Pkt Header)

Number of Rndv Msgs

)⌉
+ offset

The new threshold is chosen based on the average size of rendezvous messages
being sent from the initiating process to the peer process. The goal here is to allow
most of the large messages to go through the eager path while not increasing the eager-
threshold to an unnecessarily large value. An “offset” of 1,024 bytes is added to ensure
that messages falling right on the boundary of the new eager-threshold can also be
accounted for with this change.

The remote process on receiving the “NEW CONN HANDSHAKE REQ” packet,
first checks if it can allocate the resources necessary to proceed with the eager-threshold
change (as described in Section 3.3). If so, it proceeds to identify the local eager-
threshold value using the formula described above. It then compares the local value
with the value sent by the remote peer and uses the maximum of the two values as the



new eager-threshold for the communication channel. This value is communicated to the
peer process using a “NEW CONN HANDSHAKE REP” message and the communi-
cation channel is marked as “in-active” indicating that an eager-threshold change is in
progress. If, for some reason, the process is unable to allocate the necessary resources
or is unable to proceed with the eager-threshold change for any other reason, it responds
back with an eager-threshold value of “-1”.

The initiating process on receiving the “NEW CONN HANDSHAKE REP” packet
extracts the value of eager-threshold indicated by peer. If the value is “-1”, the peer
has indicated that it cannot proceed with the eager-threshold change and the process
marks the communication channel as being incapable of processing an eager-threshold
change so that no future eager-threshold changes are initiated by this process for the
communication channel with the peer. If the value is non-negative, the process initiates
either the partially in-band or the fully in-band mechanism (described in Sections 4.1
and 4.2 respectively) to establish a new connection with the larger eager-threshold.

3.3 Allocating Resources for Eager-Threshold Change
High-performance MPI libraries for InfiniBand typically use shared receive queues
(SRQ) for improved scalability [22, 24]. With this technology, a process can have just
one queue to receive data from any peer process. However, the buffers that are posted
to receive data on the shared receive queue must be large enough to hold the data any
sender may possibly send to it in a gratuitous fashion. In other words, the buffers posted
to the SRQ must be equal to the new eager-threshold size the process wants to use iden-
tified by the “handshake” protocol described in Section 3.2. We introduce a pool based
design where each process creates a set of internal communication buffers whose size
is equal to the new eager-threshold agreed upon by the pair of processes. If such a pool
already exists (from a previous dynamic eager-threshold change with another process),
the pool and the associated SRQ is reused. Otherwise, a new pool and the SRQ are
created and added to the list of available pools. We limit the number of such pools
that a process can create, to a value that can be set at runtime by the user through an
environment variable (default value: 20).

4 Dynamic and Adaptive Design for Point-to-point
Communication Protocols

In this section we discuss the various alternative designs as well as their benefits and
deficiencies. We use the open-source MVAPICH2 [14] library for the proposed designs
and studies in this paper. However, the proposed designs are generic and can be incor-
porated into other MPI libraries.

4.1 Partial In-band Design
We first explore a partial in-band design to re-establish the connections between the
process pairs with an increased eager-threshold. The various messages exchanged in
this design are depicted in Figure 5(a). One of the major benefits of this approach is its
ability to take advantage of the existing on-demand connection establishment design in
MVAPICH2 [28, 27]. Once the new eager-threshold has been successfully identified as
described in Section 3.2, the design marks the communication channel as inactive to



prevent the application from sending any further messages. The initiator process then
allocates resources as described in Section 3.3 and sends a “RECONN REQUEST” to
the peer process. This will be the last message the initiator process transmits over the
existing IB connection (also know as a queue pair - QP). The peer process on receiving
the “RECONN REQUEST” proceeds to mark the communication channel as inactive
and replies back with a “RECONN REPLY”. This will be the last message that the peer
process transmits over the existing QP. When the initiator process receives the “RE-
CONN REPLY”, it initiates an “OUT OF BAND RECONN REQUEST” through the
QP being used for the on-demand connection management design. On reception of the
“OUT OF BAND RECONN REQUEST”, the peer process allocates resources as
described in Section 3.3, drains all the send completions from the exist-
ing QP and destroys it. After completing this successfully, it transmits a
“OUT OF BAND RECONN REPLY” to the initiator. The initiator on receiving the
request drains all the send completions from the existing QP, destroys it, and starts the
on-demand connection establishment using the newly allocated resources. As we can
see, one of the major cons of this approach is the duration of time for which the com-
munication channel is marked as inactive. Such a long duration of inactivity has the
potential to negatively impact the application throughput. Thus we discard this design
from further consideration.

Process 1 Process 2

Channel Inactive
Create/Reuse 

SRQ/VBUF
Channel Inactive

Drain Send
Destroy QP

Create/Reuse 
SRQ/VBUF
Drain Send
Destroy QP

Start UD CM

(a) Partial in-band design

Process 1 Process 2

Create/Reuse
VBUF Pool 

Create QP, SRQ
Create VBUF
Pool, new QP
QP->RTRQP->RTR->RTS

Poll for Send 
completions

QP->RTS
Poll for Send 
completions

Transition to
new QP

Transition to
new QP

(b) Full in-band design
Fig. 5. Connection establishment in partial and full in-band designs

4.2 Full In-band Design
In the full in-band design, we completely avoid using the on-demand connection man-
agement design in MVAPICH2 and instead use the regular communication channel to
exchange messages. The various messages exchanged in this design are depicted in
Figure 5(b). The major benefit of this design when compared to the partial in-band de-
sign is that the communication channel is always active and thus does not affect the
communication throughput of the application. Once the new eager-threshold has been
successfully identified as described in Section 3.2, the initiator process allocates re-
sources as described in Section 3.3, creates a QP for new eager-threshold and transmits
a “NEW CONN REQ” message to the peer. The message contains the end-point infor-
mation of the initiator process so that the peer can begin the process of IB connection
management. The peer on receiving the “NEW CONN REQ” allocates resources as



described in Section 3.3, extracts the initiator end-point information from the message,
transitions the newly created IB QP to ready-to-receive (RTR) state, and responds to the
initiator with a “NEW CONN REP” message containing the local end-point informa-
tion.

The initiator process on receiving the “NEW CONN REP” extracts the peer pro-
cesses end-point information and uses that to transition the new local QP to RTR and
ready-to-send (RTS) states. At this point, the new QP is capable of gratuitously sending
messages to the peer at the increased eager-threshold size. Once this is complete, the
initiator will ensure that all the previous send operations on the existing QP has com-
pleted and will send out a “CONN EST” message to the peer with the local end-point
information. This will be the last message that is sent on the old QP. All future messages
are sent over the newly created QP. The peer on receiving the “CONN EST” message
will transition its newly created QP to the RTS state and is thus capable of gratuitously
sending messages to the peer at the increased eager-threshold size. After this, the pro-
cess will ensure that all the previous send operations on the existing QP has completed
and will send out a “CONN EST” message to the peer with the local end-point infor-
mation. This will be the last message that is sent on the old QP. All future messages are
sent over the newly created QP.

The initiator on receiving the “CONN EST” message responds back with a
“CONN EST ACK” message over the new QP to indicate that there are no more mes-
sages in flight on the old QP. The peer on receiving this message will destroy the old QP
and send a “CONN EST ACK” message over the new QP to indicate that the initiator
can destroy the old QP as well thus completing the transition to the new eager-threshold
size. As this design proceeds without having to throttle application communication, it
has the potential to deliver the best performance. Thus we use the “Full In-band” design
for all experimental evaluations in the paper.

4.3 Avoiding Message Loss During Threshold Migration

It should be noted that in our design, eager thresholds are not bidirectional, i.e. a mes-
sage from Process A to Process B could go over the eager protocol while a message
of the same size from Process B to Process A could go through the rendezvous path.
Furthermore, each process can independently decide to change the eager-threshold for
a peer process based on its past communication with said peer. To prevent loss of mes-
sages, both peers must be able to identify when to switch to the new QP as well as
handle in-flight messages during the handshake. The handshake protocol used in the
“Full In-band” design achieves this by ensuring that a) the initiator process starts send-
ing messages through the new QP only after the target process has acknowledged that
it is ready to receive on the new QP, and b) the target process destroys the old QP only
after getting a confirmation from the initiator that it has processes send completions for
all messages sent through the old QP.

4.4 Mitigating Memory Footprint Requirements

A major concern with manually and exhaustively tuning the eager-threshold and the
proposed dynamic and adaptive design is the potential increase in memory footprint of
the MPI library due to the increased size of internal communication buffers. To address



this issue, we propose a design that dynamically identifies unused internal communica-
tion buffers and reclaims them. However, unless performed carefully, this operation can
lead to a continuous cycle of allocation and freeing of internal communication buffers
leading to poor performance.

Most high-performance MPI libraries dynamically allocate internal communication
buffers as and when the library runs out of these buffers due to communication pressure
from the application. Further, most applications have phases where the communication
activity increases and decreases. Thus, if proposed design is too aggressive in freeing
internal communication buffers, it could free a large number of buffers in the phase with
low communication only to reallocate them when the communication pressure increases
again. To avoid such a cycle, we add weights to the communication buffers and only
free them if they have not been used for a specific period of time which is tunable.
We have done extensive tuning of this value on multiple supercomputing systems and
identified appropriate values for it to ensure that such cycles of allocation and freeing
are avoided as much as possible. With such a design, we are able to significantly reduce
the memory overhead caused by the dynamic and adaptive designs to less than 50% of
what the manually tuned designs can offer.

4.5 Alternate Design Approaches

In this section, we explore possible alternate designs to avoid the requirement to ex-
change the control information in the rendezvous exchange which is the major cause
for the lack of overlap. The ideal solution here would be to have a hardware component
to which the rendezvous exchange can be offloaded. Unfortunately, such technology is
still not available in the public domain. In this context, we create a new design that uses
the “Receiver-Not-Ready” or RNR mechanism of InifniBand to avoid (1) the need to
exchange control information and (2) the need for intermediate memory copies from
the application buffer to internal MPI buffers and back. Figure 6 depicts how the com-
munication proceeds in the RNR-based design.

Process 1 Process 2

MPI_Isend
Register Memory 

Post Send
Reply from HCA

Retry by HCA

MPI_Irecv
Register Memory
Post Recv

HCA Sends Data

Create and Exchange Tag-specific QPs during Initialization

Retry by HCA

Fig. 6. Communication in RNR-based de-
sign

In the RNR design, the sender and re-
ceiver create a special QP for each tag
used for communication. Once the QP
has been created, the sender directly reg-
isters the send buffer with the IB HCA
and sends the data to the receiver’s QP.
At this point, the IB HCA takes over and
continually checks with the target HCA
as to whether it is ready to receive the
data. The target HCA becomes ready to
receive data when the receiver arrives and
posts a corresponding receive operation
to the special QP created earlier. Un-
til this event occurs, the receiver HCA
will respond back to the sender HCA’s
queries indicating that the receiver is not ready (RNR). Although there is a timeout
after which the sender will stop trying to transmit the data to the receiver, we increase



it so that the sender keeps retrying infinitely. Finally, when the receiver arrives, the tar-
get HCA indicates that the receiver is ready causing the sender to place the data in the
buffer pointed to by the receive QP which happens to be the application level buffer
in the RNR design. This design eliminates the need for the application to explicitly use
control messages to stage the rendezvous transfer or to use intermediate memory copies
to transfer the data using the eager protocol.

However, this design has several functionality and performance issues making it
more constrained to use in real world applications. (1) Due to the lack of hardware-
based tag matching, it cannot support wild cards such as
MPI ANY SOURCE and MPI ANY TAG which is very common in MPI as well as
application communication. Further, as described above each communicating process
pair needs to use a separate QP for communication creating a scalability bottleneck. On
the performance side, the RNR design is unable to send a continuous stream of data as
a typical eager or rendezvous protocol does. This is mainly due to the fact that it cannot
start a subsequent transfer until the previous transfer is complete. Thus, it is hard to
keep the communication pipeline resulting in sub-par communication throughput. Due
to these performance and functionality constraints, we discount this design from further
performance evaluations.

5 Experimental Results
In this section, we describe the experimental setup, provide the results of our experi-
ments, and give an in-depth analysis of these results. All numbers reported here are av-
erages of a minimum of five runs. There was little to no variance between the different
runs. As described in Sections 4.1 and 4.5, we discard the Partial In-band design and
RNR-based design from further performance evaluation due to their inherent design
limitations. Thus, for the remainder of the performance evaluation section, “dynamic
threshold” refers to the Full In-band design described in Section 4.2.

5.1 Experimental Setup
We used multiple high-performance computing systems to obtain the results for this
paper:

Gordon @ SDSC [21]: Each node contains two 8-core 2.6 GHz Intel EM64T Xeon
E5 (Sandy Bridge) processors and 64 GB of DDR3-1333 memory. The operating sys-
tem used is CentOS release 6.4(Final), with kernel version 2.6.32-431.29.2.el6. The
network topology is a 4x4x4 3D torus with adjacent switches connected by three 4x
QDR InfiniBand links (120 Gb/s). Compute nodes (16 per switch) and I/O nodes (1 per
switch) are connected to the switches by 4x QDR (40 Gb/s).

Stampede @ TACC: Each node is equipped with an Intel SandyBridge series
of processors using Xeon dual eight-core sockets, operating at 2.70 GHz with 32 GB
RAM. Each host is equipped with MT4099 FDR ConnectX HCAs (54 Gbps data rate)
with PCI-Ex Gen3 interfaces. The operating system used is CentOS release 6.7 (Final),
with kernel version 2.6.32-431.17.1.el6, and OpenFabrics version 1.5.4.1. The network
is a five-stage partial Fat-Tree with 5:4 oversubscription on the links.

5.2 Performance of 3D-Stencil Benchmark
In this section, we analyze the performance results of the 3D-stencil benchmark (de-
scribed in Section 2.3) for different process counts on Stampede. In Figure 7(a), we



compare the raw communication performance of the default, manually tuned, and the
proposed dynamic design at 8,192 processes. The default scheme provides the best
pure communication time. However, when seen in conjunction with the overlapping
computation, the default scheme performs worse than the manually tuned and proposed
dynamic schemes as indicated by the overall time and overlap numbers in Figures 7(c)
and 7(b) respectively. We also observe that, while the default scheme is able to offer bet-
ter communication initialization time by avoiding the large memory copies associated
with eager protocol indicated in Section 2.1, it loses out significantly in the time spent
in MPI Wait. This is because, with the rendezvous protocol being used in the default
scheme, almost all of the time consuming data transfer happens in the MPI Wait oper-
ation with little or no overlap of computation and communication actually happening.
Due to lack of space, we are unable to include the figures describing the initialization
and wait times in the paper.
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Fig. 7. Performance and overlap offered by various point-to-point communication pro-
tocols for 3D-Stencil benchmark at 8,192 processes on Stampede

Finally in Figure 8, we study the pure communication performance, overlap ob-
tained, and overall communication time for the 128KB message size of the 3D-stencil
benchmark for various system sizes on Stampede. As we can see, while the proposed
dynamic threshold design takes a slight hit in raw communication performance (de-
picted in Figure 8(a)), is able to provide much better overlap (depicted in Figure 8(b))
and overall time (depicted in Figure 8(c)) when compared to the default design.

 0

 2

 4

 6

 8

 10

 128 256 512 1K 2K 4K 8K

C
o
m

m
u
n
ic

a
ti
o
n
 

 L
a
te

n
c
y
 (

m
s
)

Number of Processes

Default
Dynamic Threshold

(a) Raw Communication Per-
formance

 0

 20

 40

 60

 80

 100

 128 256 512 1K 2K 4K 8K

O
v
e
rl
a
p
 (

%
)

Number of Processes

Default
Dynamic Threshold

(b) Overlap Potential

 0

 3

 6

 9

 12

 15

 128  256  512 1K 2K 4K 8K

O
v
e
ra

ll 
T

im
e
 (

m
s
)

Number of Processes

Default
Dynamic Threshold

(c) Overall Times

Fig. 8. Comparison of performance and overlap offered by Default and Dynamic
Threshold design for 128 KB messages in 3D-Stencil benchmark at different scales
on Stampede



5.3 Performance of Amber

We perform an in-depth study and analysis of the performance of the Amber molecu-
lar dynamics code with the different point-to-point communication protocol designs in
this section. Figure 9(a) shows the overall application execution time with the default
design, various manual tuning options, and the proposed dynamic design. As we can
see, for different system sizes, best performance is given by different manual tuning
options. Such unpredictable behavior (as indicated in Section 1.1) makes this kind of
manual tuning cumbersome, error prone, and impractical. The proposed dynamic de-
sign, on the other hand, is able to deliver performance on par with the best manual tuned
design in a user transparent way making it a high-productivity and high-performance
option for application developers.
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Fig. 9. Performance of Amber on Gordon with different values of Eager-Threshold

Figure 9(b) illustrates the memory used for the internal communication buffers used
by the MPI library to stage the data transfers. The data is plotted relative to the amount
of memory taken by the default design for internal communication buffers. As we can
see, the default design gives best memory scalability. However, we also observe from
Figure 9(a) that, it is unable to deliver the best performance due to its inability to effec-
tively overlap communication and computation. The proposed dynamic design, on the
other hand, is able to keep the memory footprint to the absolute minimum required by
the design described in Section 4.4.

Figure 10 depicts the number times various processes performed switches of eager
thresholds during the execution of the program for different system sizes. Although,
due to space limitations, we only show details of the larger system sizes, note that the
trends for smaller system sizes are similar. As we can see, at 256 and 512 processes the
processes perform a lot of eager-threshold changes. This is reflected as increased mem-
ory usage for the dynamic design for the corresponding system sizes in Figure 9(b).
However, at 1,024 processes, we observe that a large percentage of the processes per-
form no eager-threshold changes (indicated by the large value for zero in Figure 10(c)).
This trend translates to relatively lower memory consumption for the dynamic design
(when compared to 256 and 512 processes) as seen in Figure 9(b).

Figure 11 shows the maximum value of eager message size that various processes
in the job end up with for different job sizes with Amber. We can see a clear trend with
the maximum value of the message continually decreasing as the size of the system
increases. While the median max eager-threshold size with 256 processes is 128KB,
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Fig. 10. Number of eager-threshold switches performed by different number of pro-
cesses with Amber on Gordon
it reduces to 64KB at 512 processes and further reduces to 32KB at 1,024 processes.
This indicates a distribution of computation load among the different processes - in
other words, strong scaling. Another interesting trend to observe is the similarity in
the number of processes whose max eager-threshold value is 17KB (the default value)
at 1,024 processes as depicted in Figure 11(c) and the number of processes that per-
form no eager-threshold changes indicated by the large value for zero in Figure 10(c).
These values corroborate each other indicating that the processes that do not have to
perform eager-threshold switch are actually those whose desired max eager-threshold
value happens to be equal to the default value the MPI library is configured with.
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Fig. 11. Maximum value of eager-threshold used by different number of processes with
Amber on Gordon

Figure 12(a) depicts the average and maximum time taken for one eager threshold
switch across all processes for various system sizes. As we can see, the maximum over-
head of establishing a new connection is very low (of the order of 40 ms) indicating the
efficiency of the proposed design. Figure 12(b) on the other hand measures the maxi-
mum and average cumulative time spent by each process for eager-threshold switching
during the lifetime of the job. As we can see, while the maximum value fluctuates a
little, it is still very low (< 0.5 seconds). Note that this is for jobs that take 300 seconds
to 350 seconds to execute on average (depicted in Figure 9(a)). Thus, we can clearly
see that even the maximum cumulative time for eager-threshold switching only forms
a negligible percentage (0.1%) of the overall execution time. Finally in Figure 12(c),
we measure the time taken to perform dynamic de-allocation of internal communica-
tion buffers described in Section 4.4 for various system sizes with Amber on Gordon.
As with the cumulative time for eager-threshold switching, we see that the maximum
time taken to handle the overheads associated with dynamically allocating and free-
ing internal communication buffers are always less than one second. As we mentioned
above, this only forms a negligible percentage (0.3%) of the overall execution time of
the application.
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6 Related Work

The use of extra threads, commonly known as asynchronous progress threads, to
progress communication in the background has been a popular method to progress com-
munication in the background while the application is computing in the foreground.
While this allows progression of messages without the application having to enter the
MPI library to progress the communication, it takes away a valuable computation core
away from the application process which can adversely affect the overall performance
of the application.

Brightwell et al [5] showed that eagerly sending large messages can improve latency
for pre-posted receives. However, this scheme has to resend unexpected large messages
in presence of application skew, which does not affect our design. In [3], Barrett et al
proposed the use of triggered operations in the portals [20] interface to perform large
message rendezvous operations. This method is similar to the RNR-based design pro-
posed in Section 4.5 and also suffers from the same drawbacks as the RNR-based design
in that it is not able to handle wild cards in the MPI library (e.g: MPI ANY SOURCE).

Researchers have also explored the use hardware-assisted tag matching techniques
to offload rendezvous transfers to the hardware. While several high-performance net-
work interconnect such as Intel Omni-Path, Myrinet [4], Quadrics [2], Bull BXI [10],
and Mellanox [1] have proposed and are proposing solutions that expose such capabili-
ties to high performance MPI libraries.

Automatic tuning for MPI libraries and applications has been explored by many
researchers [17, 6, 19, 23]. However, such tools generally cannot perform more targeted
tuning, such as changing eager-threshold for a small number of peers. Although the
introduction of MPI-T [13] might enable such fine-grained tuning, good designs are
still required inside the MPI library to minimize the overhead involved.

The emerging remote memory access (RMA) model semantically relieves the re-
mote process from having to actively participate in communication. Thus it has the po-
tential to completely overlap computation and communication. Although the use of the
MPI3-RMA models is slowly catching up, the vast majority of scientific applications in
use today still use the two-sided communication model. Further, collective operations,
that are widely used across various scientific domains, still rely on two-sided point-to-
point operations. Thus the proposed schemes are likely to remain very relevant in the
future.



7 Conclusion and Future Work
In this paper, we proposed designs for point-to-point data transfer in MPI which ac-
counts for overlap in addition to performance and memory footprint. The proposed
designs dynamically adapt to the communication characteristic of each communicating
pair of processes at runtime. Our proposed fully in-band design is able to transition from
one eager-threshold to another without impacting the communication throughput of the
application while taking care of all possible corner cases. The proposed enhancements
to limit the memory footprint by dynamically freeing unused internal communication
buffers is able to significantly cut down on memory footprint of the MPI library without
affecting the communication performance. Our experimental evaluation showed that the
proposed dynamic and adaptive design is able to deliver performance on-par with what
exhaustive manual tuning provides while limiting the memory consumed to the abso-
lute minimum necessary to deliver the desired benefits. For instance, with the Amber
molecular dynamics application at 1,024 processes, the proposed design was able to
perform on-par with the best manually tuned versions while reducing the memory foot-
print of the MPI library by 25%. With the 3D-Stencil benchmark at 8,192 processes, the
proposed design is able to deliver much better overlap of computation and communica-
tion as well as improved overall time compared to the default version. To the best of our
knowledge, this is the first point-to-point communication protocol design that is capable
of dynamically adapting to the communication requirements of end applications.

As part of future work, we plan to study the benefits of the proposed design with
multiple applications at scale.
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